3 Importing data
3.1 Load pamlr
3.2 Use existing data
pamlr has three integrated datasets for exploring the code. These include:
3.3 Import your own data
Importing data is easy with pamlr. All data files should be found within the same directory which can be accessed through the pathname
argument. Currently there are a list of supported file types, which include:
- “.pressure”
- “.glf”
- “.gle”
- “.acceleration”
- “.temperature”
- “.magnetic”
It’s therefore possible to decide which of these to import. By default, all are imported.
3.4 Data details
Once the PAM data are imported, they are stored as a nested list - with each element in the list containing a dataframe of measurements per date. For more details on the format of the data, use:
## List of 6
## $ id : chr "16AJ"
## $ pressure :'data.frame': 37412 obs. of 2 variables:
## ..$ date: POSIXct[1:37412], format: "2016-07-15 00:00:00" "2016-07-15 00:15:00" ...
## ..$ obs : int [1:37412] 969 969 969 969 969 969 969 969 969 969 ...
## $ light :'data.frame': 112401 obs. of 2 variables:
## ..$ date: POSIXct[1:112401], format: "2016-07-15 00:00:00" "2016-07-15 00:05:00" ...
## ..$ obs : int [1:112401] 0 0 0 0 0 0 0 0 0 0 ...
## $ acceleration:'data.frame': 111900 obs. of 3 variables:
## ..$ date: POSIXct[1:111900], format: "2016-07-15 00:00:00" "2016-07-15 00:05:00" ...
## ..$ pit : int [1:111900] 10 10 10 10 10 10 11 11 11 11 ...
## ..$ act : int [1:111900] 0 0 0 0 0 0 2 0 0 0 ...
## $ temperature :'data.frame': 36818 obs. of 2 variables:
## ..$ date: POSIXct[1:36818], format: "2016-07-15 00:00:00" "2016-07-15 00:15:00" ...
## ..$ obs : int [1:36818] 33 33 33 33 33 33 33 33 33 33 ...
## $ magnetic :'data.frame': 1559 obs. of 7 variables:
## ..$ date: POSIXct[1:1559], format: "2016-07-15 00:00:00" "2016-07-15 06:00:00" ...
## ..$ gX : int [1:1559] 849 -487 211 505 725 -2048 454 -126 919 -886 ...
## ..$ gY : int [1:1559] -2035 -2182 -2601 -2581 -2507 -1847 -2582 -2650 -2437 -2574 ...
## ..$ gZ : int [1:1559] -1642 -1962 351 -20 118 -1626 41 -76 -152 -1327 ...
## ..$ mX : int [1:1559] -1600 -947 -2779 7 -1852 5844 1061 -118 -2196 2493 ...
## ..$ mY : int [1:1559] 15645 15610 15259 15549 15561 14545 16631 14548 15195 10924 ...
## ..$ mZ : int [1:1559] 5559 4627 6374 6147 5887 10881 5177 9000 6810 13793 ...
Pressure data are recorded in hectopascals, generally every 15/30 minutes
Light data are recorded in an arbitrary unit, generally every 2/5 minutes
Acceleration data are summarised into two variables:
act
which is short for “activity”“, and is the sum of the difference in acceleration on the z-axis (i.e. ”jiggle"). It is recorded every 5 minutes (summarised from 32 measurements - 10Hz)pit
which is short for “pitch”, and is the relative position of the bird’s body relative to the z axis. It is an average over 32 measurements and is summarised every 5 minutes.
Temperature data are recorded in degrees Celsius, generally every 15/30 minutes
Magnetic data are in fact the combined recordings from a tri-axial accelerometer and magnetometer.
gX
,gY
andgZ
are snapshot tri-axial acceleration data, recorded every 4 hours.mX
,mY
andmZ
are snapshot tri-axial magentic field data, recorded every 4 hours.
3.5 Temporal resolution of data
Note that different sensors and loggers often collect data at different time intervals
Sensor | Logger | Developper | Resolution | Life | Reference |
---|---|---|---|---|---|
Pressure | PAM-logger | SOI | 15/30 min | 1 year | Dhanjal-Adams et al. (2018) |
activity logger | CAMR | 1h | 1 year | Sjöberg et al.(2018) | |
OS barologgers | CLA | 1 min | 13 days | Shipley et al. (2017) | |
Temperature | PAM-logger | SOI | 15/30 min | 1 year | Liechti et al. (2018) |
activity logger | CAMR | 1 h | 1 year | Sjöberg et al.(2018) | |
OS barologgers | CLA | 1 min | 13 days | Dreelin et al. (2018) | |
Acceleration | |||||
activity | PAM-logger | SOI | 5 min | 1 year | Meier et al. (2018) |
activity logger | CAMR | 1h | 1 year | Bäckman et al. (2017) | |
pitch | PAM-logger | SOI | 5 min | 1 year | Liechti et al. (2018) |
tri-axial | PAM-logger | SOI | 4 h | 1 year | Liechti et al. (2018) |
Magnetic | |||||
tri-axial | PAM-logger | SOI | 4 h | 1 year | Liechti et al. (2018) |
SOI = Swiss Ornithological Institute
CAMR = Centre for Animal Movement Research
CLA = Cornell Laboratory of Ornithology
3.6 Cropping the data
Note that very often, a logger continues to record data before and after it is removed from a bird. For example, it might be transported in a rucksack or left in a laboratory until data are downloaded. It’s therefore important to remove these incorrect datapoints. This can be done using cutPAM
.
3.7 Table references
Bäckman, J., Andersson, A., Alerstam, T., Pedersen, L., Sjöberg, S., Thorup, K., & Tøttrup, A. P. (2017). Activity and migratory flights of individual free-flying songbirds throughout the annual cycle: method and first case study. Journal of Avian Biology, 48(2), 309–319. doi:10.1111/jav.01068
Dhanjal-Adams, K. L., Bauer, S., Emmenegger, T., Hahn, S., Lisovski, S., & Liechti, F. (2018). Spatiotemporal Group Dynamics in a Long-Distance Migratory Bird. Current Biology, 28(17), 2824–2830.e3. doi:10.1016/j.cub.2018.06.054
Dreelin, R. A., Shipley, J. R., & Winkler, D. W. (2018). Flight Behavior of Individual Aerial Insectivores Revealed by Novel Altitudinal Dataloggers. Frontiers in Ecology and Evolution, 6, 182. doi:10.3389/fevo.2018.00182
Hedenström, A., Norevik, G., Warfvinge, K., Andersson, A., Bäckman, J., & Åkesson, S. (2016). Annual 10-Month Aerial Life Phase in the Common Swift Apus apus. Current Biology, 26(22), 3066–3070. doi:10.1016/J.CUB.2016.09.014
Liechti, F., Bauer, S., Dhanjal-Adams, K. L., Emmenegger, T., Zehtindjiev, P., & Hahn, S. (2018). Miniaturized multi-sensor loggers provide new insight into year-round flight behaviour of small trans-Sahara avian migrants. Movement Ecology, 6(1), 19. doi:10.1186/s40462-018-0137-1
Meier, C. M., Karaardıç, H., Aymí, R., Peev, S. G., Bächler, E., Weber, R., … Liechti, F. (2018). What makes Alpine swift ascend at twilight? Novel geolocators reveal year-round flight behaviour. Behavioral Ecology and Sociobiology, 72(3), 45. doi:10.1007/s00265-017-2438-6
Shipley, JR, Kapoor, J, Dreelin, RA, Winkler, DW. (2018) An open‐source sensor‐logger for recording vertical movement in free‐living organisms. Methods in Ecol Evol.; 9: 465– 471. doi:10.1111/2041-210X.12893
Sjöberg, S., Pedersen, L., Malmiga, G., Alerstam, T., Hansson, B., Hasselquist, D., … Bäckman, J. (2018). Barometer logging reveals new dimensions of individual songbird migration. Journal of Avian Biology, 49(9), e01821. doi:10.1111/jav.01821